۱-۲-۴-نانو حفره ها
این ذرات حفراتی کوچک تر از ۱۰۰ نانومتر دارند. زئولیت ها دسته ای طبیعی از نانو حفره هاست. سطح ویژه این مواد بالاست( در حد چند صد مترمربع بر گرم)، به همین دلیل با قرار گرفتن مواد در حفره آن ها، خصلت کاتالیزوری آن ها به دلیل افزایش مساحت سطح، افزایش می یابد. خصلت جالب توجه این ذرات، انتخاب پذیری آن هاست که به دلیل اندازه ثابت حفره، اجازه عبور را تنها به برخی از مواد می دهند. از روش های ساخت آن ها، می توان به روش سل ژل و سوزاندن میسل های آلی درون دیواره های معدنی اشاره کرد. فیلتر کردن آب، خالص سازی آنزیم ها و داروها و تولید نیمه هادی ها، از جمله کاربردهای آن هاست.
(۱-۴)-نانوحفرههای تولید شده در آلومینا، به روش آندایز خود نظم یافته
۱-۳-روش های تولید نانو ذرات
به طور کلی واکنش های شیمیایی برای تولید مواد می تواند در هر یک از حالت های جامد، مایع و گاز صورت گیرند. در اینجا به طور خلاصه به انواع روش های متداول سنتز نانو مواد زئولیت پرداخته میشود [۳].
( اینجا فقط تکه ای از متن درج شده است. برای خرید متن کامل فایل پایان نامه با فرمت ورد می توانید به سایت feko.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. )
۱-۳-۱-سل ژل[۶]
روش سل- ژل برای تولید ذرات سرامیکی و اکسیدهای فلزی همگن با خلوص بالا به کارمی رود. این روش شامل تشکیل یک سوسپانسیون کلوئیدی (سل) است که به ژل های ویسکوز با مواد جامد تبدیل می گردد. پراکنده شدن ذرات با اندازه های کمتر از ۱۰۰ نانو متر در داخل زمینه سیال را در اصطلاح سل یا کلوئید می گویند. روش سل- ژل فقط برای تولید اکسیدهای فلزی مفید است. این امر به دلیل وجود پیوندهای فلز- اکسیژن در پیش ماده های آلکوکسید است و ژل های تولیدی هیدروکسید یا اکسید خواهد بود. این فرایند نسبت به
دیگر روش های تولید نانو ذرات اکسید فلزی، مزیت های ممتازی دارند که عبارتند از تولید پودرهای فوق العاده خالص به علت مخلوط شدن همگن مواد خام در مقیاس مولکولی و حجم تولید صنعتی نانو ذرات. از عیب های این روش، هزینه بالای پیش سازهای آلکوکسید و سمی بودن مواد اولیه مورد نیاز است [۴و۵].
(۱-۵)-محصولات قابل تولید با فرایند سل ژل
۱-۳-۲-فرایندهای شیمیایی مرطوب[۷]
فرآیندهای تولید نانو ذرات برپایه ی محلول شامل رسوب جامد از یک محلول اشباع، تبدیل و احیای شیمیایی فاز مایع و تجزیه پیش سازهای شیمیایی به کمک انجام ماورای صوت است. این عملیات به دلیل سادگی، تنوع و تطبیق پذیری و قابلیت استفاده با مواد پیش ساز ارزان قیمت مورد توجه می باشند. احیای نمک، یکی از روش
های مورد تایید برای تولید ذرات کلوئیدی فلزی است. این فرایند شامل تجزیه نمک های فلزی در محیط های آبی یا غیر آبی و احیای کاتیون های فلزی است.
۱-۳-۳-فرایند هیدروترمال[۸]
فناوری هیدروترمال می تواند در زمینه سنتز، رشد، دگرگونی و تبدیل مواد شیمیایی کاربرد داشته باشد. همچنین بسیاری از فرآیندهای دهیدراسیون، تخریب شیمیایی، استخراج و فرایند های سونوشیمیایی و الکتروشیمیایی، و … می توانند با روش هیدرو ترمال صورت بگیرند. تقریبا سنتز تمامی ترکیبات معدنی با ساختارهای عنصری، اکسید، سیلیکات، ژرمانات، فسفات، کلکوژناید، نیترید، کربنات و … می توانند تحت روش های هیدروترمال صورت پذیرند. در زمینه سنتز مواد پیشرفته، بزرگترین ترکیبات تک بلوری کوارتز[۹] و زئولیت۳ تاکنون بصورت مصنوعی با تکنولوژی هیدروترمال ساخته شده اند. روش هیدروترمال می تواند برای سنتز مواد کاربردی نظیر مواد مغناطیسی، اپتیکی پیزوالکتریک، سرامیک و .. در مقیاس بالا (تجاری) به صورت تک بلوری و چند بلوری به کار گرفته شود. تک بلورهای ایجاد شده با این روش بسیار خالص، بزرگ و فاقد نقص های بلوری (خصوصا نقص های جابجایی)هستند. پودرهای تهیه شده با فرایند هیدروترمال دارای مزایای مقابل هستند: دارای ذرات مجزا، خلوص بسیار بالا (فاقد آلودگی)، غیرکلوخه ای، و با ریخت شناسی و ترکیب بلوری مشخص (معمولا تک بلوری) و بصورت تک پخش می باشند و به راحتی در حلال بازپخش می شوند. فرایند هیدروترمال می تواند به صورت سازگار با محیط زیست در زمینه تخریب ضایعات و همچنین مونومریزاسیون بسیاری از ترکیبات پایدارو آلاینده طبیعت، جایگزین روش های ناکارآمد حاضر باشد. تمامی این کاربردها فناوری هیدروترمال را به یک رویکرد اساسی و کارا در زمینه های آزمایشگاهی، صنایع شیمیایی نوین و تولید مواد پیشرفته مبدل ساخته اند. از مزایای این روش می توان به تولید مواد پیشرفته با خلوص بالا، تجهیزات نسبتا ارزان قیمت، دمای پایین فرایند، مصرف پایین انرژی و سازگاری کامل با محیط زیست اشاره نمود [۶و۷]. همچنین از ماکروویو نیز می توان استفاده کرد در هیدروترمال این روش برای سنتز مواد نانومتخلخل، ژل آبی شامل مواد اولیه و
مواد کمکی واکنش مانند عامل های هدایت ساختار [۱۰]، محیط واکنش را تشکیل داده و گرمای واکنش توسط امواج ریزموج تأمین می شود [۶].
(۱-۶)-سنتز هیدروترمال زئولیت
۱-۳-۴-سنتز به روش محلول شفاف[۱۱]
معمولا نانوزئولیتها از یک محلول آبی قلیایی حاوی منابع Si و Al و یونهای فلزات قلیایی (سدیم یا پتاسیم ) تهیه میشوند . در سنتز برخی از انواع زئولیت، یک “عامل هدایت کننده ی ساختاری آلی۳“ نظیر کاتیونهای آلکیل آمونیوم برای تشکیل ساختارهای ثانویه ی زئولیت نیاز است .این محلول شفاف اولیه میتواند تحت شرایط هیدروترمال قرار داده شود یا در فرایند سل- ژل به کار گرفته شود. همانطور که گفته شد، محلولهای پیشران شفاف با یک مقدار اضافی از طاق سازهای آلی معمولابرای تهیه زئولیتهای
در سایز نانو استفاده میشوند. این سیستمها در طول فرایند کریستاله شدن به هسته زایی سریع با کمترین میزان تجمع ذرات نیاز دارند. وابسته به ساختار زئولیت، تجمع ذرات میتواند با کاهش محتوای کاتیونهای قلیایی در سیستم پیشران یا با جایگزینی کامل باز معدنی به وسیله ی هدایت کننده ی ساختاری آلی نظیر تتراآلکیل-آمونیومها، بازداری شود. برای تهیه کریستالهای نانوزئولیت، سیستم پیشران باید درجه ی بالایی از فوق اشباعیت داشته باشد، زیرا فوق اشباعیت باعث افزایش سرعت هسته زایی، افزایش تعداد هسته ها و اندازه ی ذرات کوچکتر میشود. در ژلهای آلومینا سیلیکات، فوق اشباعیت به شدت تحت تاثیرHp است. علاوه براین Hp بالا باعث کاهش دمای سنتز میشود [۸و۹].
۱-۳-۵-سنتز به روش بازدارنده ی رشد[۱۲]
در این روش، یک افزودنی آلی غیر از هدایت کننده های ساختاری وارد سیستم میشود. این افزودنی با بازداری کردن از فرایند رشد کریستالها منجر به تشکیل کریستالهای کوچکتر میشود. واکنش پذیری ماده ی بازدارنده و مقدار آن در مخلوط آغازین دو عامل تاثیرگذار میباشند. ماده ی افزودنی باید توانایی جذب سطحی و واکنش با سطح ذرات سیلیکات را داشته باشد تا از تراکم اضافی جلوگیری کند. غلظت بالای ماده ی بازدارنده باعث می شود اجزای آزاد آلومیناسیلیکات به میزان کافی برای تشکیل ساختار زئولیت در سیستم وجود نداشته باشد و در نتیجه کریستالی به دست نمی آید. از طرفی غلظت بسیار پایین بازدارنده اثر بازدارندگی کافی را نخواهد داشت [۱۰].
۱-۳-۶-سنتز به روش فضای محبوس۲
اولین مورد از چنین سنتزی توسط ژاکوبسین و مادس ۳ برای سنتز نانوکریستالهای زئولیتZSM-5 گزارش شده است. آنها در سال ۱۹۹۹ یک روش جدید برای سنتز زئولیت با توزیع اندازه ی کریستالهای کنترل شده تشریح نمودند. اصول سنتز به روش فضای محبوس این است که کریستالها در داخل فضاهای نیمه
متخلخل یک ماتریکس بی اثر سنتز میشوند. اندازه یحداکثر کریستالها توسط قطر خلل و فرج محدود میشود. بخش دشوار این روش نیاز به یک ماتریکس بی اثر و پایدار در طول شرایط انجام واکنش و نیاز
به توزیع سایز خلل و فرج مشخص در ماتریکس، برای داشتن توزیع سایز کریستال های همسان می باشد [۱۰].
(۱-۷)-سنتز زئولیت ZSM-5 به روش فضای محبوس
۱-۳-۷-سنتز به روش میکروامولسیون [۱۳]
استفاده از میکروامولسیونها و خصوصا مایسلمعکوس یکی از راههای سنتز کنترل شده نانوذرات است. بسیاری از نانوذرات در نانوراکتورهای مایسلی و تحت واکنشهایی نظیر فرآیندهای رسوبی، کاهش و هیدرولیز سنتز میشوند. روشهای تولید نانومواد بهصورت تکپخش ۲ و با پخش اندازه ۳ محدود منجر به افزایش کیفیت محصول می شوند. یکی از راهکارهای سنتزی جهت نیل به این هدف، استفاده از نانوراکتورها جهت سنتز نانوذرات میباشد. از جمله سادهترین نانوراکتورهای مولکولی مایسل ها هستند. این اجتماعات مولکولی حاصل خود آرایی مولکولهای سورفکتنت در حدفاصل فاز آبی و آلی است. میکروامولسیونها مخلوطهای همگن و تک پخش از مایسلها هستند که از مخلوط کردن فاز آلی
(روغنی)، فاز آبی و پایدار کننده ها (سورفکتانتها) با نسبت مشخصی تهیه میشوند. به طور عمومی سنتز نانوذرات در ساختارهای مایسلی به دو روش صورت می پذیرد. روش اول شامل مخلوط کردن دومحصول با ساختار مایسل معکوس اما حاوی واکنشگرهای مختلف است. واکنش با برخورد نانورآکتورها به یکدیگر، تلفیق آن ها و تبادل مواد بین دو مایسل صورت میپذیرد. در روش دوم، تنها از یک محلول مایسل معکوس استفاده میشود. در این حالت واکنش بین واکنشگر حل شده در مایسل و واکنشگر حل شده در حلال آلی اتفاق میافتد [۱۱].
(۱-۸)-شمایی از روند سنتز نانوذرات با بهره گرفتن از روش میکروامولسیون
۱-۴-زئولیت
نخستین بار در سال ۱۷۵۶ بلورهای خاصی که در زیر شکاف های صخره ها تشکیل شده بودند توسط یک معدن شناس سوئدی به نام الکس فرودریک کرونستدت کشف شد او مشاهده کرد هنگام گرما دادن به بلورها مقدار زیادی آب به صورت بخار از آن خارج می شود بنابراین با توجه به دو لغت یونانی زین به معنای جوشیدن و لیتوس به معنای سنگ این بلور زئولیت (سنگ جوشان ) نامگذاری شد. خواصی از زئولیت ها مانند دهیدراسیون بدون تخریب ساختمان کریستال زئولیت ها، عبور نکردن برخی از مایعات مانند بنزین، الکل، کلروفرم و جیوه از زئولیت های دهیدراته، جذب سطحی گازهای هیدروژن، آمونیاک، سولفید هیدروژن و هوا
روی زئولیت و جذب سطحی مولکول های الی کوچک و دفع مواد آلی بزرگتر توسط زئولیت های دهیدراته محققان را بسوی این علم جذب نمود، زئولیت ها به طور کلی به دو دسته تقسیم میشوند .
۱-۴-۱-زئولیت های طبیعی
حدود ۴۰ نوع زئولیت در طبیعت شناخته شده است که برخی از آن ها استفاده صنعتی دارند. زئولیت های طبیعی نتیجه غیر مستقیم فعالیت های آتشفشانی بوده و از طریق دگرگونی هیدروترمال بازالت، خاکستر اتشفشانی و سنگ پا تولید میشوند. اکثر زئولیت های طبیعی دارای نسبت Si/Alکم می باشند. زئولیت های با تخلخل زیاد مانند [۱۴]FAU که نمونه ی مصنوعی آن XوY میباشد در طبیعت بسیار کمیاب هستند دو نوع زئولیت طبیعی با ارزش ،کلینوپتیلولیت (HEU)2 و موردینت ها (MOR)3برای تعویض یون رادیو اکتیو ،کاربردهای کشاورزی و جاذب استفاده می شوند. فعالیت کاتالیستی زئولیت ها ی طبیعی بدلیل خلوص و سطح تماس کم آنها محدود می باشد .
۱-۴-۲-زئولیت های مصنوعی
زئو لیت های مصنوعی در مقایسه با زئولیت های طبیعی از خلوص بالایی برخوردا بوده و دارای دامنه ی کاربردی وسیع تری می باشند محققین پیش ازسال ۱۹۵۰جهت تولید زئولیت ها درصدد ساخت ژئوکانی های طبیعی شناخته شده بودند و تصور می کردند که تشکیل زئولیت ها مستلزم درجه حرارتی در حدود ۲۰۰تا۴۰۰ درجه سانتیگراد و ده ها فشار اتمسفری می باشد ولی در سال ۱۹۷۵موفق شدند زئولیت ها را در دمایی پایین تر (۱۰۰>) در مقیاس صنعتی تهیه نمایند از لحاظ منبع Si و نسبت Si/Al زئولیت ها به سه دسته زیر تقسیم بندی میشوند :
۱-زئولیت ها با مقدار کم سیلیکا
۲-زئولیت ها با مقدار متوسط سیلیکا
۳ -زئو لیت ها با مقدار زیاد سیلیکا
از مهم ترین و پر کابردترین زئولیت ها ی مصنوعی می توان به CHA3 ,MFI ,MEL2 ,FER[15] و AFI4 اشاره نمود که زئولیت MFI که کاربرد صنعت فراوان دارند.
(۱-۹)- برخی از زئولیت های رایج
۱-۳-۴-ساختار و خواص زئولیت ها
زئولیت ها آلومینو سیلیکات های کریستاله با خلل و فرج های ریز شامل واحدهای چهار وجهی سازنده ی ساختار اسکلت می باشند که سیستمی از خلل وفرج و حفرات در اندازه ی مولکول تولید می کنند [۱۲] . ساختار آن ها آنیونی بوده و شامل کانال ها و حفراتی است [۱۳]. زئولیت ها از چهاروجهی AlO4 و SiO4که از اتصال اتم اکسیژن تشکیل می شوند .برای یک ساختار کامل سیلیسی ، واحدهای SiO4گرایش به سمت
تشکیل SiO2با چهار بار منفی دارند با مشارکت آلومینیوم در ساختار سیلیکا وجود سه بار مثبت Al کل ساختار دارای یک بار منفی می شود و برای اینکه از لحاظ بار الکتریکی خنثی باشد نیازمند یک ساختار کاتیونی آلی- معدنی می باشد . ترکیب شیمیایی زئولیت که تعیین کننده ی خواص آن می باشد را می توان به صورت زیر بیان کرد
. [(SiO2) x. (AlO2-) y] .zH2O
در فرمول M نشانگر کاتیون اضافه شده با بار m است این کاتیون توسط پیوند الکترواستاتیکی به ساختار متصل شده و در شبکه ی کریستال سیار می باشد ، xوy اعداد صحیح هستند و z تعداد مولکول آب را نشان می دهد. ساختار زئولیت ها توسط واحدهای سازنده ،چیدمان ،اندازه و شکل هندسی حفرات تعیین میشود. ساختار بدنه ای زئولیت می تواند با رشد منظم واحدهای ساختاری بلوک های چهار وجهی TO4 که (T=Si ,Al) ساخته شوند در ساختار زئولیت ها پیوند Si-O-Al و Si-O-Siشبکه و چیدمان سه بعدی چهار وجهی های که واحده های سازنده ی پایه UBB است را تشکیل میدهند. در برخی موارد زئولیت ها از ترکیب واحد های سازنده ی مرکب (CBU) و (BBU) ها تشکیل می شود. این CBU ها می توانند حلقه های تک یا زنجیره های تک باشند و یا ساختارهای پیچیده تر مانند زنجیره های شاخه دار یا ساختارهای چندوجهی بسازند.برای اکثر زئولیت ها اندازه ی حفره یک ویژگی کلیدی به شمار می آید. محدوده ی دهانه ی کانال ها یا حفره ها از ۳/۰ تا ۱ نانو متر بسته به ساختار زئولیت متغیر می باشد[۱۴]
۱-۵-زئولیت ZSM_5
یکی از انواع زئولیت ها،ZSM-5 می باشد که به عنوان کاتالیست کاربرد وسیعی در صنعت و محیطی دارد. طراحی کاتالیست زئولیت نقش معنی داری در توسعه فرایندهای جدید و پیشـرفته تکنولـوژی در آینده خواهد داشت. به دلیل کاربردهای کاتالیتیکی زئولیـتZSM-5، در تعـداد زیـادی از فراینـدهای شیمیایی و پتروشیمی، این نوع زئولیت ماده ای بسیار مفید در صـنعت مـی باشـد. زئولیت MFI در سال۱۹۷۰ توسط شرکت تحقیقاتی موبایل کشف شد. استفاده از زئولیت ZSM-5) MFI و سـیلیکات) در فرایندهای جداسازی گازها و مایعات، فرایندهای غـشایی و کاتالیـستی گـزارش شـده اسـت. این زئولیت با مقدار زیاد سیلیکا در بـیش از ۵۰ فراینـد بـه عنـوان جـزء اصـلی کاتالیـست اسـتفاده می شود. این زئولیت بعد از زئولیتY، پرکاربردترین زئولیـت کاتالیـستی مـی باشـد. غـشاهای ZSM-5) MFI و سیلیکات) در میان غشاها به دلیل پایداری حرارتی، شیمیایی و مکانیکی بالا، ویژگـی آب گریـزی، عمـر دراز مدت، و ظرفیت جذب سطحی بالا بسیار مورد توجه می باشد. مقالات بسیاری برای سنتز آن هـا بـر روی انـواع پایه های متخلخل، و اثر دما و فشار بر روی سنتز آنها ارئه شده است. این زئولیـت از حلقـه هـای ۵ عضوی تشکیل شده و به یکدیگر متصل می شـوند. ایـن سـاختار کاملا انعطاف پذیر بوده و تقارن دقیق کریستالوگرافی آن به ترکیب، دما، و مولکول های جـذب شـده بـستگی دارد. زئولیت MFI از دو نوع کانال مختلف با روزنه حلقـو ی۱۰ عـضوی تـشکیل شـده اسـت. یـک کانـال مستقیم با دهانه دایره ای با قطر ۰٫۵۴ نانومتر و یک کانال سینوسی بـا دهانـه بیـضوی بـا قطـر ۰۵۱× ۰٫۵۵دارند . این کانال ها بـا نـسبت متغیـر در MFI افزایش مـی یابـد و زئو لیت با نسبت Si/Al از ۵ به بالا قابل تهیه می باشد. با افزایش میزان Al ویژگی آب دوستی سیلیکات (فرم سیلیسی خالص) کاهش یافته و پایـداری حرارتـی بـالایی مشاهده می شود. زئولیـت MFI ظرفیت بالایی در جذب دی اکسیدکربن در مخلوط های مختلف گازی حتی با وجود بخار آب دارد [۱۵-۱۸].
(۱-۱۰)-الف:ساختار کانالی زئو لیت MFI ب: ساختار اسکلنی زئولیت MFIنشان دهنده حفرات سینوسی و مستقیم ,تقاطع انها یک نما ازساختار کامل در گوشه پایین سمت چپ دیده می شود[۱۸].
۱-۵-۱-عوامل مؤثر بر تبلور ساختار MFI
در این قسمت تأثیر غلظت اجزای سازنده مختلف موجود در فرایند در سنتز زئولیتهای ZSM-5 را بررسی می کنیم . عامل های زیر می تواند بر سرعتهای هسته زایی و رشد بلور تأثیر بگذارند:
- مقدار آلومینیم ژل یا نسبت SiO2/Al2O3 آن ؛