سلولهای هانسونلا به هر دو صورت سلولهای دیپلوئیدی و هاپلوئیدی رشد می کنند. کلنی ها بر روی محیط کشت جامد دارای طیف رنگی صورتی هستند که به علت آسکوسپورها می باشد. کلنی سلولهای هاپلوئیدی و دیپلوئیدی از نظر رنگ، اندازه، چیدمان سلولی و سایر ویژگیها با یکدیگر متفاوت می باشند.
تاکنون اطلاعاتی در مورد توانایی هانسونلا پلی مورفا در تشکیل میسلیوم کاذب پیدا نشده است (Teunisson, 1960; Wickerham, 1970).
شکل ۱-۱ مخمر H. polymorpha
هانسونلا پلی مورفا میتواند در دمای بالا و در °C42 رشد کند. به نظر می رسد در این مخمر سنتز تره هالوز قسمتی از پاسخ به قحطی منبع کربن و شوک حرارتی است و پیشنهاد شده که این ترکیب، فاکتور مهمی در مقاومت دمایی است (Reinders, 1999).
مطالعات انجام شده بر روی هانسونلا پلی مورفا به طور عمده به بررسی پروتئین های سلولی، ساختار سلولهای مخمر در حال رشد و یا بررسی متابولیسم مخمر پرداخته اند.
در سویه هایی از این مخمر که از متانول به عنوان منبع انرژی استفاده می کنند، آنزیمهای متانول اکسیداز و کاتالاز، به فرم کریستالی درون اندامکی به نام پراکسی زوم قرار گرفته اند (Van Dijken, 1975).
هانسونلا پلی مورفا بعنوان یک ارگانیسم متیلوتروف، یک مدل مطلوب برای تحقیق در مورد عملکرد پراکسی زم ها و تکامل حیات می باشد. همچنین به منظور بررسی ژنتیکی جنبه های مختلف متابولیسم سلولی از جمله متابولیسم متانول، جذب نیترات و مقاومت به فلزات سنگین مورد مطالعه قرار می گیرد ( (Mannazzu, 2000.
(( اینجا فقط تکه ای از متن درج شده است. برای خرید متن کامل فایل پایان نامه با فرمت ورد می توانید به سایت feko.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. ))
با وجود این ویژگیها، هنوز قابلیت های ژنتیکی و طبیعی سویه های مورد استفاده از این مخمر کاملاً مشخص نیست و کنترل ژنتیکی فرایندهای سلولی پایه از جمله کنترل تقسیم سلولی، تولید مثل و اسپورزایی هنوز با سؤالات زیادی مواجه می باشد.
با اینحال هانسونلا پلی مورفا به عنوان یک میزبان برای تولید پروتئین های خارجی(ترشحی به خارج از سلول) توجه زیادی را به خود جلب کرده است ( (Gellissen, 2000.
۱-۲مطالعات ژنتیکی
تحقیقات ژنتیکی تاکنون تنها بر روی سه سویه از این مخمر انجام شده است که شامل سویه های DL-1، CBS 4732 و NCYC 495 می باشند.
پیدایش سویه های هانسونلا پلی مورفا از سویه های جهش یافته اکسوتروف شروع شده است.این موتانت ها از سویه هایی که در بالا نام برده شد با بهره گرفتن از ترکیب شیمیایی N-متیل-N-نیترونیتروزو گوانیدین[۱] یا اتیل متان سولفونات به دنبال یک مرحله غنی سازی با نیستاتین به دست آمده اند.
از طرف دیگر اشعه ماوراء بنفش نیز یک موتاژن بسیار قوی است که طیف موتانت های ایجاد شده بوسیله آن در مقایسه با موتانت های حاصل از مواد شیمیایی متفاوت و گسترده تر می باشد (Roggenkamp, 1986).
بطور کلی فرایندهای جهش زایی متعددی در این مخمر انجام شده است که یکی از این فرایندها، جهش های ژنتیکی است که منجر به سنتز اسیدآمینه های آروماتیک می شود که به مخمر اجازه رشد در محیط غنی YPD را نمی دهند (Krappmann, 2000).
از جمله انواع جهش یافته های اکسوتروف میتوان به موارد زیر اشاره نمود:
سویه هانسونلا پلی مورفای جهش یافته ای که برای رشد بر روی محیط های معدنی الزاماً به ریبوفلاوین نیاز دارد و محدود نمودن منبع ریبوفلاوین تأثیر شدیدی بر روی سنتز مجموعه الکل اکسیداز و تکثیر پروکسی زومهای سلولی دارد (Evers, 1994).
نوع دوم جهشهای ایجاد شده در ژن FAD1 است که اسید چرب دلتا[۲] را کد می کند. کاربرد این سلولهای جهش یافته در بررسی ژنتیکی سنتز اسیدهای چرب غیراشباع می باشد ( (Anamnart, 1998.
تحقیقات اخیر نشان داده است که هانسونلا پلی مورفا میتواند برای بررسی مقاومت به فلزات سنگین مورد استفاده قرار گیرد چراکه توانایی رشد در حضور تجمع فلزات سنگین متفاوت را که برای سایر موجودات سمی است دارا می باشد (Mannazzu, 1997).
در طی رشد در محیط حاوی vanadate، سلول ها افزایش قابل توجهی از پلی فسفات های واکوئلی پیدا میکنند. احتمالاً نقش این واکوئل ها در فعال کردن مکانیسم های اتوفاژی است که شاید برای جبران کمبود مواد مغذی و یا حذف ساختارهای سلولی ناهنجار القاء شده توسط این یون فلزی لازم باشند (Mannazzu, 1998).
سلول های هانسونلا پلی مورفا در مقایسه با S. cerevisiae به یون های کادمیوم(cd2+) بسیار مقاومند )این مقاومت به شدت به ماهیت منبع کربن استفاده شده بستگی دارد. سلول ها اغلب زمانیکه بر روی محیط حاوی گلوکز رشد میکنند به کادمیم مقاومتراند اما در طی رشد بر روی محیط حاوی متانول، به عنوان منبع کربن و انرژی، به این یون بسیار حساس می باشند. سویه های جهش یافته مقاوم به کادمیوم به سه گروه cds1، cds2 و cds3 تقسیم میشوند ( (Lahtchev, unpublished data.
جهش در ژنهای کدکننده آنزیم های پراکسی زومی یا سیتوپلاسمی درگیر در متابولیسم متانول
ژن AOX1 (MOX)، کدکننده آنزیم الکل اکسیداز (AO) موجود در ماتریکس پروکسی زوم است و یکی از بهترین ژن های هانسونلا پلی مورفا در تحقیقات می باشد (Ledeboer, 1985). الکل اکسیداز یک آنزیم فلاووهومواکتامری است که اولین مرحله در متابولیسم متانول را کاتالیز میکند. مونومر این آنزیم در سیتوپلاسم سنتز شده و به صورت هومواکتامر فعال، تجمع یافته و در داخل پراکسی زوم قرار میگیرد. حدود ۲۱۰ نوع جهش یافته از ژن AO وجود دارد ( (Titorenko, 1995. بیان این ژن در مرحله رونویسی تنظیم میشود.
شکل ۱-۲ مورفولوژی سلولهای H. polymorpha جهش یافته
در هانسونلا پلی مورفا وقایع مربوط به مهار و القاء ژنهای کد کننده آنزیم های اختصاصی متانول و یا آنزیمهای پراکسی زومی به شدت کنترل می شوند. تنظیم در سطح رونویسی با مکانیسم های کنترلی قابل ملاحظه ای انجام میشود. عناصر تنظیمی به فرم سیس[۳] در بالادست ژنهای DAS، CAT[4] و FMD[5] با نقش مهاری برای گلوکز شناسایی شده اند.
۱-۳ نقشه ژنتیکی
آنالیز تتراد در هانسونلا پلی مورفا امکان پذیر است اما اندازه کوچک اسپورها روند این آنالیز را کند می نماید. در کشت سلول های دیپلوئیدی تفکیک مندلی نرمال در مورد بیشتر مارکرهای ژنتیکی مشاهده شده است.
الکتروفورز DNA کروموزومی هانسونلا پلی مورفا به روش pulse field، ۳ تا ۷ باند را نشان داده است که به نوع سویه وابسته است (Mari, 1993)اما بطور کلی مشخص شده است که هانسونلا پلی مورفا حداقل ۷ کروموزوم دارد که بعضی از آنها مضاعف (دو تایی) هستند (Naumov, 1992).
۱-۴ تولیدمثل و اسپورزایی
فاکتورهایی در تولیدمثل و اسپورزایی هانسونلا پلی مورفا درگیرند که هنوز بطور کامل شناسایی نشده اند. از القاء کننده های قوی تولیدمثل جنسی میتوان به مالتوز، گلیسرول و سوربیتول اشاره کرد (Lahtchev, unpublished data).
سلول های هاپلوئید بر اساس نوع فنوتیپشان به چهار گروه تقسیم میشوند:
سویه های گروه ۱ و ۲ میتوانند هیبریداسیون متقاطع[۶] داشته باشند. این سویه ها سریع الرشد و تهاجمی بوده و پس از گذشت یک روز در محیط انتخابی، دیپلوئیدی می شوند. سویه های گروه ۳ توانایی جفتگیری با اعضای گروه ۱ و ۲ را دارند و سویه های مثبت (+) نامگذاری می شوند. سویه های گروه ۴ تنها میتوانند با گروه مثبت جفتگیری کنند و گروه منفی (-) را تشکیل دهند.
۱-۴-۱ اسپورزایی
در هانسونلا پلی مورفا سلولهای هاپلوئیدی توانایی اسپورزایی دارند. اسپورزایی هاپلوئیدها بعد از گذشت ۸ روز در محیط حاوی ۳% مالتوز در دماهای پائین قابل تشخیص است. اسپورزایی با ظاهر شدن کلنی های دیپلوئیدی به رنگ صورتی روشن همراه می باشد.
در اواخر دهه ۱۹۶۰ کشف شد که مخمرها توانایی رشد بر روی محیط حاوی متانول به عنوان منبع کربن و انرژی را دارند (Ogata, 1969). اخیراً در تحقیقات پایه، متیلوتروف ها به عنوان منبع پروتئین های تک سلولی[۷] (SCP) ((Cooney and Levine, 1976) و آنزیم های غیرمعمول و متابولیت ها توجه بسیاری را به خود جلب کرده اند. با بهره گرفتن از روش های جدید کلونینگ، ژن های کد کننده آنزیم های کلیدی در متابولیسم متانول شناسایی شده اند (Wegner, 1990).
پروموترهای MOX و FMD بعد از القاء، بسیار قوی عمل می نمایند. این مطلب با مشاهده میزان بالای بیان محصولات تحت تأثیر این پروموترها قابل انتظار است.
این یافته ها استفاده از هانسونلا پلی مورفا، به عنوان یک میزبان مناسب برای بیان به میزان زیاد ژنهای هترولوگ با بهره گرفتن از این پروموترها، به عنوان اجزاء کنترل کننده بیان، را قابل قبول نماید (Roggenkamp, 1984; Hollenberg and Janowicz, 1988).
سیستم بیانی شامل هانسونلا پلی مورفا سویه RB11 و پلاسمیدهای حاوی توالی های URA3و HARS1[8] است که به دنبال هم قرار گرفته اند. استفاده از پروموترهای FMD یا MOX و ترمیناتور MOX همراه با جایگاههای برش آنزیمی کوتاه مربوط به کلونینگ[۹] (MSC) بین این دو واحد، کلونینگ و بیان ORF[10]های هترولوگ را ممکن ساخته است.
آنالیز سویه های بیانی، پایداری میتوزی قابل توجه پلاسمید های الحاق شده به درون ژنوم را نشان می دهد که در بعضی موارد بیانگر سرعت بیان بالای ORF هترولوگ می باشد.
از طرف دیگر، سویه RB11، اغلب دستکاری های ژنتیکی به صورت نوترکیبی را به راحتی نمی پذیرد که شاید ناشی از پایداری میتوزی فوق باشد. به نظر می رسد سویه DL-1 نسبت به سویه RB11 توانایی پذیرش بیشتری را دارد (Gellissen, 1992).
۱-۶ پروموترهای مورد استفاده در سیستم های بیانی هانسونلا پلی مورفا RB11
یکی از پروموترهای مورد استفاده برای تولید پروتئینهای هترولوگ در هانسونلا پلی مورفا سویه RB11، پروموتر ژن MOX می باشد که طول آن بیش از ۵/۱ کیلوباز بوده و در حضور منبع کربن تنظیم می شود. به این صورت که در حضور گلوکز، پروموتر MOX مهار می شود ولی در حضور متانول، القاء می گردد.
پروموتر سایر ژن های کدکننده آنزیم های کلیدی در کاتابولیسم متانول از جمله FMD، DAS و CAT نیز مشابه با پروموتر ژن MOX کنترل می شوند اما سطح تنظیمی بعضی از آنها همچون CAT مشخص نیست (Veenhuis, 1983).
اگرچه پروموترهای FMD و MOX به طور واضحی مقایسه نشده اند اما بعضی مقایسه ها نشان داده است که مزایای پروموتر FMD از پروموتر MOX بیشتر است. بعنوان مثال، هانسونلا پلی مورفا سویه RB11 بیان کننده ژن فیتاز تحت کنترل پروموتر FMD، بازده زیادی در تخمیر در شرایط قحطی گلوکز دارد.
۱-۶-۱ HARS1
پلاسمیدهای بیانی مورد استفاده در هانسونلا پلی مورفا سویه RB11 دارای عنصر HARS1 به طول تقریبی ۵/۰ کیلوباز می باشند. این قطعه ژنی در سالهای اخیر در طراحی وکتورهای مناسب برای انتقال به هانسونلا پلی مورفا مورد توجه قرار گرفته است Roggenkamp, 1986)). پلاسمیدهای حامل توالی HARS1 در ۳۰-۲۰ نسل ابتدایی رشد سلولها به صورت اپی زومال باقی می مانند اما پس از آن در ژنوم سلول مزبان به صورت تکرارهای متوالی به تعداد زیاد الحاق می شوند. این در حالی است که ناحیه ای که این پلاسمیدها دقیقاً در ژنوم ادغام می شوند هنوز مشخص نیست Gellissen, 1990)). چهار عنصر دیگر از خانواده قطعه ژنی HARS در سویه های DL-1 به دست آمده است اما تعداد کپی آنها از تعداد عناصر HARS1 در سویه RB11 کمتر است.
جزئیات مکانیسم ادغام شدن پلاسمیدهای حاوی توالی HARS1 در ژنوم این مخمر هنوز مشخص نیست. تنها ویژگی شناخته شده، توانایی ادغام شدن به صورت توالیی تکراری و غیرتصادفی است که قسمت خاصی از ژنوم را انتخاب می کند (Sohn, 1996).
شکل ۱-۳ تصویر پلاسمید بیانی مخمر H. polymorpha
۱-۷ بیان همزمان[۱۱]: